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1. INTRODUCTION

The performance of a gun for a given propellant formulation can be estimated by a

constant chamber pressure calculation. This calculation assumes that the propellant burns at

a rate that produces a constant pressure in the chamber as the projectile moves down the

gun tube. The pressure chosen is the maximum pressure that a given gun can withstand.

When the propellant is completely consumed, adiabatic expansion takes place as the

projectile moves down-bore to the muzzle. These two expansions, one at constant pressure

and one adiabatic, determine the gun performance. Although in practice, the constant

pressure may be difficult to achieve, this part of the calculation is useful in comparing different

propellant formulations. As will be seen later in this report, the adiabatic expansion is virtually

the same for all conventional propellants because it depends only on y (the specific heat

ratio), which hardly varies from one propellant to another, and on volume change, which is

determined solely by the gun's geometry.

Propellants do differ markedly, however, in their capabilities for producing a specified

chamber pressure with the least amount of propellant.

A useful figure of merit for comparing propellant formulations is the impetus, or specific

energy, defined by RTw/(WM), where R is the gas constant, T the temperature, and w is the

mass of gas of molecular weight M, produced by propellant of mass W (Freedman 1982).

Conventional propellants produce little or no condensed (solid of liquid) phases; so for them,

w = W, and impetus is just RT/M. For example, using an ideal gas equation of state for the

combustion products,

P/p = RT/M.

From this, the pressure in the chamber can be found for a given loading density, p.

Thermodynamic calculations will determine a flame temperature, T, and molecular weight M

for a given propellant formulation. (For actual gun conditions, a real gas equation of state

must be used.)

Currently, a variety of new energetic formulations are being tested for the electrothermal

gun to obtair, working fluids with properties that are advantageous for this propulsion concept.
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Several of these formulations involve the production of large quantities of solid products. The

purpose of this paper is to describe the effect of these condensed phase products on

predicted ballistic performance. As can be seen from the calculation of the impetus, products

containing large amounts of solids will affect the impetus. As will be seen later, y is also

affected.

2. PHYSICAL INTERPRETATION OF y

One of the important thermochemical parameters used in interior ballistic calculations is

the specific heat ratio, y. It is defined as the ratio of the heat capacities C/CvI where

Cp = AQ/A TIP, and C, = AQ/ATI - For monatomic gases, this ratio is 1.67; for typical

propellant gases, this value is between 1.22 to 1.26. As the molecule becomes more complex

and has more internal degrees of freedom, y approaches 1. The physical reason for this

behavior is discussed in the following paragraphs.

The heat capacities measure the energy required to raise the temperature an amount, AT.

Cp is determined under conditions of constant pressure. Thus, more energy AQ is required to

raise the temperature AT than in the constant volume case CV, since work must be

determined in expanding the volume PA V to maintain a constant pressure. Since Cv is

performed at constant volume, no additional work is involved. Thus, the ratio C/C v is greater

than one.

As molecules become more complex, the number of internal degrees of freedom (df's),

(e.g., vibrational and intramolecular rotational modes) increases. Since these internal df's are

in equilibrium with the translational df's, part of the energy AQ must be used in exciting these

df's. Thus, for complex molecules, a greater amount of energy AQ is required for a given

change in temperature in both CP and Cv. The amount of energy needed for the work PAV

becomes a smaller percentage of the total AQ and, hence, the ratio C/CV approaches 1.

Thus, simple products such as atoms have large values for y, whereas compl3x products,

especially solids, have y's approaching 1.
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A

B

Figure 1. Schematic of Ballistic Process.

3. CONSTANT PRESSURE CALCULATIONS

To illustrate the effect that y has on the various portions of the interior ballistic cycle,

consider a constant chamber pressure caiculation diagrammed in Figure 1. The constant

pressure portion A to B is maintained while the propellant burns. After the propellant has

been consumed, the adiabatic expansion process occurs as the projectile moves down-bore

from B to C.

For purposes of this discussion, the projectile mass is assumed to be considerably larger

than the propellant mass. Hence, the chamber and projectile base pressures are nearly the

same. In addition, an ideal gas is assumed, and heat losses are ignored.

The energy required to pressurize the chamber, with no projectile movement, from ambient

pressure up to the operating pressure P is
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Energy(A) = (1)
Y-1

The energy required during the constant pressure portion of the ballistic cycle as the projectile

moves from A to B is

PI '/2 PI VI v
Energy (A to B) - - J.+ mv, (2)

y-1 y-1 2

where m and VB are the mass and velocity of the projectile at B. Next, expressing the

projectile kinetic energy as

MV2 v,

-2 P dV = P, (V 2 - V , (3)

substituting into Equation 2 and simplifying, yields

7 P1 ( V2 - V1 )
Energy (A to B) = (4)

7-1

Thus, during the initial pressurization of the chamber and throughout the constant pressure

portion of the ballistic cycle (from A to B), tne energy required to attain and maintain a

constant pressure increases as y approaches 1. This is consistent with the physical

interpretation of "y-more energy is required to excite the internal degrees of freedom of the

products with the low y.

Now consider the third stage of the ballistic cycle shown in Figure 1. This portion is the

adiabatic expansion of the product gases as the projectile moves to the muzzle from point B,

where the propellant burns out, to point C at the muzzle. The work done on the projectile is

given by

m[v2 - v ,
Energy (B to C) - (5)

2

= f, PdV. (6)

For an adiabatic expansion,

PV'= constant. (7)
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Substituting into Equation 6 for P,

Energy(B to C) = constant fr dV (8)

V

= -(constant) VI-i(9)

or substituting the limits and using Equation 7,

P1 V2 -P3 V3Energy (B to C) = (10)
7-1

Since

P3 V = P, V(11)

and substituting into Equation 10 for P3,

Energy (B to C) = PIV 2 -P 1(V 2/V 3) V3  (12)
Y- 1

Since both numerator and denominator approach 0 as y approaches 1, it is not clear what

effect low values of y will have on the energy. Thus, consider two expansion processes both

beginning with the same initial pressure but having different y's, Y1 and Yg, with -, > 7..

Table 1 shows the energy ratios EIE, (found from Equation 12) with three different expansion

ratios V3/V2. The ratio EflEg is less than 1, indicating that the process with the smaller Y

imparts more energy to the projectile during the expanion process. As the gun barrel

becomes longer (larger V3/V2), the difference between the E's becomes more pronounced.

Thus, more energy is tranferred to the projectile from the gases with the smaller y during the

expansion process.

To summarize, the propellant products with the smaller y require more energy to attain a

specified pressure during the constant pressure portion of the cycle, but some of this energy

is recovered in the expansion process as the projectile moves down-bore.
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Table 1. Expansion Energy

Energy Ratio Expansion Ratio Ratio of Specific Heats

E/Eg V3N2  7f Yg

0.79 20:1 1.25 1.08

0.83 10:1 1.25 1.08

0.87 5:1 1.25 1.08

4. PROPELLANT EVALUATION

As indicated in the previous section, y, as well as impetus, must be considered in

evaluating propellant performance. Two propellants were chosen to illustrate this fact: 1) a

low impetus and a low y, and 2) higher impetus and larger y. Table 2 gives the propellant

properties along with the results of a constant breech pressure gun calculation. The projectile

base pressure vs. distance is given in Figure 2. Both calculations utilize the same mass of
propellant.

As seen in Figure 2, propellant 1 burns out earlier. However, the down-bore pressure

eventually exceeds that of propellant 2 during the expansion process. This can be interpreted

as follows. The small y results in a requirement for more energy to maintain the same

pressure, as some of the energy is required for the internal degrees of freedom of the

products. However, during the expansion process, a portion of this energy is recovered as

the energy stored in the internal degrees of freedom is used during the assumed equilibrium

process to contribute to a higher down-bore temperature and pressure than that for

propellant 2. Propellant 2 has an impetus 19% higher than propellant 1 and, from impetus

considerations alone, should give a velocity increase of 9% (i.e., [1.19]1/2 = 1.09). Table 2

shows only a 3% difference in velocity. The energy regained in the expansion process results

in this smaller velocity difference than that which would be expected if only impetus values

were considered. In conclusion, to evaluate propellants when there are solids in the

combustion products, complete interior ballistic calculations are required. The area under the

base pressure vs. projectile travel curve is the determining factor in projectile velocity.
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Figure 2. Projectile Base Pressure vs. Travel for Case 1 (low impetus, high Y) and Case 2
(high impetus, low Y).

Table 2. Propellant Properties and Constant Pressure Gun Calculations

Propellant Case 1 Case 2

Impetus, (J/g) 920 1,142

Y 1.08 1.2257
Tf 3,450 3,450

Impetus/(y-1), (J/g) 11,500 5,060
Velocity, (m/sec) 1,412 1,460

5. THERMOCHEMICAL CALCULATIONS FOR SOLIDS

Thermochemical codes such as BLAKE (Freedman 1982) are used to calculate

characteristics of gun propellants such as the impetus, y, molecular weight, covolume, etc.
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These values are then used in interior ballistic codes to predict gun performance. A very

small amount of solid products is formed for conventional propellants. The thermochemical

code assumes that solid products do not contribute to the pressure that accelerates the

projectile. The solid products are assumed to occupy volume, and in that sense, they alter

the pressure. The y for the system is calculated by BLAKE for the gas phase products only.

In the interior ballistic calculation, these particles are assumed to be evenly distributed from

the breech to the projectile base; however, stored energy in the particles is assumed not to be

returned to the gases except by thermal transfer. The mass of the particles contributes to the

calculation of the propellant charge mass to projectile mass ratio C/M and thus to the pressure

drop between the projectile base and the chamber as, for instance, when using the Lagrange

gradrient.

Suppose the solid particles move down-tube and remain in thermal equilibrium with the

gas phase products. The energy stored in these particles will then contribute to the

acceleration of the projectile by exchanging energy with the gas phase component. It would

then be useful to have an effective y for this mixture so that interior ballistic calculations could

account for this effect.

To determine the heat capacities for solids, the equation

cp-c v = T, (13)

where

T = temperature,
Vo = molar volume,
a = coefficient of thermal expansion,

= coefficient of compressibility

must be used. However, many of these data are not available, especially under gun chamber

conditions. An alternative approach is to calculate an effective y by considering the

energetics of the process. Consider the reaction

A = C + D, (14)
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where in the products, C are particulates, and D is a gas.

Total Energy = solid phase energy + gas phase energy,

or,

Impetus f . cPdT + Impetus (15)
Y'-1 . 7-1

A BLAKE thermochemistry calculation provides the gas phase impetus, Y and Tf. The JANAF

tables provide a value for Cp for the solid phase products. From the above equation, we can

derive an effective y', which can be used in interior ballistic calculations.

6. EQUILIBRIUM BETWEEN SOLIDS AND GASES

Do particles moving down the tube remain in equilibrium with the gas? The formalism of

the heat transfer of particles in a flowing gas is outlined in Cohen and Decker (1982). An

assumption is made that radiation losses from the particles are negligible, and that the particle

velocities are nearly the same as the gas (i.e., the particles flow down the gun tube).

dT 6h' (T' - T)
dt CpD

h'- Nuk' (16)
D

The prime (') parameters refer to the gas phase; the others refer to the solid phase.

h' = heat transfer coefficient.

Nu = Nusselt number, which equals 2 with the assumption that the particles have a low

velocity relative to the gas.

k' = conductivity of the gas.

C = heat capacity of the particles.

p = density of the particles.

D = diameter of the particles.

9



The solution yields

= CPD 2 In (T-T2)(7)
12k' [(T' T)J (

This represents the time it takes for a particle at T1 in a gas at a lower temperature ' to go to

a final temperature, 72. This time should be as short as possible so that the energy from the

particles can be transferred to the gas during the ballistic process. Hydrogen gas has a large

conductivity, especially at high temperatures, and so will be chosen as the gas. For 10-jim

diameter particles of a solid material in H2, the relaxation time is on the order of 100 jIsec

under the assumption that (' - 72)/(' - T1) is approximately 0.4. Larger particles will have a

substantially longer relaxation time, and any gas other than H2, which has a very high

conductivity, will also lengthen the time. Thus, considering that the expansion process for

large caliber guns occurs in times of the order of milliseconds, the equilibrium assumption

appears plausible if the particle size is 10 im or less. In reality, experimental measurements

must be carried out to determine if the particles are indeed in equilibrium with the gas.

7. BALLISTIC IMPLICATIONS

It is interesting to determine the effect of y on the ballistics for a series of hypothetical

propellants all with the same impetus but with different y's. This situation could exist if solid

particles were formed, but some did not remain in equilibrium with the gas during the

expansion process. The calculated muzzle velocities are given in Table 3. As can be seen,

there is a 3.9% velocity decrease when y changes from 1.04 up to 1.24. It may also be seen

that the ballistic efficiency (muzzle energy/chemical energy) is very low for the low "

propellant. At muzzle exit, there is a substantial amount of energy stored in the gases and

solids. This is consistent with Figure 2 in which the muzzle pressure for the low Y' propellant 1
is higher than for 2. Thus, a longer gun tube could be used to extract more energy from this

propellant.
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Table 3. Theoretical Ballistic Performance for M-256, 120-mm Gun With Constant Impetus
and Varying y

7 velocity Energy Ballistic
(m/sec) (J/g) Efficiency

(%)
1.04 1,829 35,000 3.7

1.08 1,816 17,530 7.3

1.12 1,802 11,680 11

1.16 1,788 8,760 14

1.20 1,773 7,010 17

1.24 1,757 5,840 21

Impetus = 1,402 J/g
Expansion ratio - 5.6
Pmax = 480 MPa
Proj mass - 8.8 kg
Charge mass = 11.3 kg

8. CONCLUSIONS

(1) For propellants which produce large amounts of solid particulates, impetus is not a

good figure of merit. A detailed interior ballistic calculation with an effective y is required.

(2) Propellants with small y require more energy to attain a given pressure than

propellants with large y. However, these propellants with the smaller y return greater

amounts of energy to the projectile during the expansion portion of the ballistic cycle, for

sufficiently high expansion ratios.

(3) An effective y for gas/solid phase mixture can be estimated for use in interior ballistic

codes.

(4) Thermal equilibrium between solids and gases is plausible for the interior ballistic

process if particle sizes are under 10 Im and the gases, like H2, have a high conductivity.
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(5) Lower y propellants have lower ballistic efficiencies than conventional propellants.

This does not mean that they cannot achieve good ballistic performance, but they must have

larger chemical energy densities to achieve this performance.

Finally, although not addressed in this paper, propellants with different y's have different

interior ballistic characteristics which could have an effect on required gun tube strength, wear

and erosion characteristics, and muzzle blast.
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